When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Axiomatic system - Wikipedia

    en.wikipedia.org/wiki/Axiomatic_system

    An axiomatic system that is completely described is a special kind of formal system. A formal theory is an axiomatic system (usually formulated within model theory) that describes a set of sentences that is closed under logical implication. [1] A formal proof is a complete rendition of a mathematical proof within a formal system.

  3. List of axiomatic systems in logic - Wikipedia

    en.wikipedia.org/wiki/List_of_axiomatic_systems...

    Every logic system requires at least one non-nullary rule of inference. Classical propositional calculus typically uses the rule of modus ponens: ,. We assume this rule is included in all systems below unless stated otherwise. Frege's axiom system: [1] ()

  4. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox.

  5. Gödel's incompleteness theorems - Wikipedia

    en.wikipedia.org/wiki/Gödel's_incompleteness...

    Douglas Hofstadter, in his books Gödel, Escher, Bach and I Am a Strange Loop, cites Gödel's theorems as an example of what he calls a strange loop, a hierarchical, self-referential structure existing within an axiomatic formal system. He argues that this is the same kind of structure that gives rise to consciousness, the sense of "I", in the ...

  6. List of axioms - Wikipedia

    en.wikipedia.org/wiki/List_of_axioms

    Individual axioms are almost always part of a larger axiomatic system. ZF (the Zermelo–Fraenkel axioms without the axiom of choice) ...

  7. Axiom - Wikipedia

    en.wikipedia.org/wiki/Axiom

    Basic theories, such as arithmetic, real analysis and complex analysis are often introduced non-axiomatically, but implicitly or explicitly there is generally an assumption that the axioms being used are the axioms of Zermelo–Fraenkel set theory with choice, abbreviated ZFC, or some very similar system of axiomatic set theory like Von Neumann ...

  8. Von Neumann–Bernays–Gödel set theory - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann–Bernays...

    In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets.

  9. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Based on ancient Greek methods, an axiomatic system is a formal description of a way to establish the mathematical truth that flows from a fixed set of assumptions. Although applicable to any area of mathematics, geometry is the branch of elementary mathematics in which this method has most extensively been successfully applied.