Search results
Results From The WOW.Com Content Network
Mantle convection is the slow creeping motion of Earth's rocky mantle caused by convection currents carrying heat from the interior of the Earth to the surface. [33] It is one of 3 driving forces that causes tectonic plates to move around the Earth's surface.
An illustration of the structure of the Sun and a red giant star, showing their convective zones. These are the granular zones in the outer layers of the stars. A convection zone, convective zone or convective region of a star is a layer which is unstable due to convection. Energy is primarily or partially transported by convection in such
Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. [2] [3] Mantle convection causes tectonic plates to move around the Earth's surface. [4] The Earth's lithosphere rides atop the asthenosphere, and the two form the components of the upper mantle ...
Familiar examples are the upward flow of air due to a fire or hot object and the circulation of water in a pot that is heated from below. Forced convection: when a fluid is forced to flow over the surface by an internal source such as fans, by stirring, and pumps, creating an artificially induced convection current. [3]
The internal structure of Earth are the layers of the Earth, excluding its atmosphere and hydrosphere. The structure consists of an outer silicate solid crust , a highly viscous asthenosphere , and solid mantle , a liquid outer core whose flow generates the Earth's magnetic field , and a solid inner core .
Earth's inner core is the innermost geologic layer of the planet Earth. It is primarily a solid ball with a radius of about 1,220 km (760 mi), which is about 20% of Earth's radius or 70% of the Moon's radius. [1] [2] There are no samples of the core accessible for direct measurement, as there are for Earth's mantle. [3]
Earth's outer core is a fluid layer about 2,260 km (1,400 mi) thick, composed of mostly iron and nickel that lies above Earth's solid inner core and below its mantle. [ 1 ] [ 2 ] [ 3 ] The outer core begins approximately 2,889 km (1,795 mi) beneath Earth's surface at the core-mantle boundary and ends 5,150 km (3,200 mi) beneath Earth's surface ...
Tectonic–climatic interaction is the interrelationship between tectonic processes and the climate system. The tectonic processes in question include orogenesis, volcanism, and erosion, while relevant climatic processes include atmospheric circulation, orographic lift, monsoon circulation and the rain shadow effect.