Search results
Results From The WOW.Com Content Network
Mass–energy equivalence arose from special relativity as a paradox described by the French polymath Henri Poincaré (1854–1912). [4] Einstein was the first to propose the equivalence of mass and energy as a general principle and a consequence of the symmetries of space and time.
Einstein Triangle. The energy–momentum relation is consistent with the familiar mass–energy relation in both its interpretations: E = mc 2 relates total energy E to the (total) relativistic mass m (alternatively denoted m rel or m tot), while E 0 = m 0 c 2 relates rest energy E 0 to (invariant) rest mass m 0.
The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on the wall of the Rijksmuseum Boerhaave in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.
The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same trajectories and landing at identical times.
Einstein also examined relativistic aberration and the transverse Doppler effect. [4] The fourth, a consequence of special relativity, developed the principle of mass–energy equivalence, expressed in the equation = and which led to the discovery and use of nuclear power decades later.
In this case, conservation of invariant mass of the system also will no longer hold. Such a loss of rest mass in systems when energy is removed, according to E = mc 2 where E is the energy removed, and m is the change in rest mass, reflect changes of mass associated with movement of energy, not "conversion" of mass to energy.
[3] [4] Einstein is best known by the general public for his mass–energy equivalence formula E = mc 2 (which has been dubbed "the world's most famous equation"). [5] He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect ", a pivotal step in ...
The law of conservation of mass and the analogous law of conservation of energy were finally generalized and unified into the principle of mass–energy equivalence, described by Albert Einstein's equation =. Special relativity also redefines the concept of mass and energy, which can be used interchangeably and are defined relative to the frame ...