Search results
Results From The WOW.Com Content Network
Entropy is a measure of uncertainty in a probability distribution. For the geometric distribution that models the number of failures before the first success, the probability mass function is: (=) = (), =,,, … The entropy () for this distribution is defined as:
Integral geometry sprang from the principle that the mathematically natural probability models are those that are invariant under certain transformation groups. This topic emphasises systematic development of formulas for calculating expected values associated with the geometric objects derived from random points, and can in part be viewed as a ...
Probability generating functions are particularly useful for dealing with functions of independent random variables. For example: For example: If X i , i = 1 , 2 , ⋯ , N {\displaystyle X_{i},i=1,2,\cdots ,N} is a sequence of independent (and not necessarily identically distributed) random variables that take on natural-number values, and
The Dirac comb of period 2 π, although not strictly a function, is a limiting form of many directional distributions. It is essentially a wrapped Dirac delta function. It represents a discrete probability distribution concentrated at 2 π n — a degenerate distribution — but the notation treats it as if it were a continuous distribution.
In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...
If X 1 and X 2 are independent geometric random variables with probability of success p 1 and p 2 respectively, then min(X 1, X 2) is a geometric random variable with probability of success p = p 1 + p 2 − p 1 p 2. The relationship is simpler if expressed in terms probability of failure: q = q 1 q 2.
If a random variable admits a probability density function, then the characteristic function is the Fourier transform (with sign reversal) of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There ...