Ad
related to: electron and hole current and magnetic charge calculator for two sets of waves
Search results
Results From The WOW.Com Content Network
A quasiparticle produced as a result of electron spin–charge separation that can form both quantum spin liquid and strongly correlated quantum spin liquid: TI-polaron: Translational invariant polaron polaron Trion: A coherent excitation of three quasiparticles (two holes and one electron or two electrons and one hole) electron, hole Triplon
Electron and hole trapping in the Shockley-Read-Hall model. In the SRH model, four things can happen involving trap levels: [11] An electron in the conduction band can be trapped in an intragap state. An electron can be emitted into the conduction band from a trap level. A hole in the valence band can be captured by a trap.
The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by q m (Wb) = μ 0 q m (Am).
When an electron leaves a helium atom, it leaves an electron hole in its place. This causes the helium atom to become positively charged. In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle denoting the lack of an electron at a position where one could exist in an atom or atomic lattice.
They relate the electric and magnetic fields to total charge and total current, including the complicated charges and currents in materials at the atomic scale. The macroscopic equations define two new auxiliary fields that describe the large-scale behaviour of matter without having to consider atomic-scale charges and quantum phenomena like ...
The magnetic field (B, green arrow) of the magnet's North pole N is directed down in the −y direction. The magnetic field exerts a Lorentz force on the electron (pink arrow) of F 1 = −e(v × B), where e is the electron's charge. Since the electron has a negative charge, from the right hand rule this is directed in the +z direction.
Consider a sample with cross-sectional area A, length l and an electron concentration of n. The current carried by each electron must be , so that the total current density due to electrons is given by: = = Using the expression for gives = A similar set of equations applies to the holes, (noting that the charge on a hole is positive).
Diffusion current is a current in a semiconductor caused by the diffusion of charge carriers (electrons and/or electron holes).This is the current which is due to the transport of charges occurring because of non-uniform concentration of charged particles in a semiconductor.