Search results
Results From The WOW.Com Content Network
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:
In a dual pair of polyhedra, the vertices of one polyhedron correspond to the faces of the other, and vice versa. The regular polyhedra show this duality as follows: The tetrahedron is self-dual, i.e. it pairs with itself. The cube and octahedron are dual to each other. The icosahedron and dodecahedron are dual to each other.
In geometry, a dodecahedron (from Ancient Greek δωδεκάεδρον (dōdekáedron); from δώδεκα (dṓdeka) 'twelve' and ἕδρα (hédra) 'base, seat, face') or duodecahedron [1] is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid.
For example a tetrahedron is a polyhedron with four faces, a pentahedron is a polyhedron with five faces, a hexahedron is a polyhedron with six faces, etc. [16] For a complete list of the Greek numeral prefixes see Numeral prefix § Table of number prefixes in English, in the column for Greek cardinal numbers.
In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent . Uniform polyhedra may be regular (if also face- and edge-transitive ), quasi-regular (if also edge-transitive but not face-transitive), or semi-regular ...
A polyhedron (or polytope in general) is k-isohedral if it contains k faces within its symmetry fundamental domains. [5] Similarly, a k -isohedral tiling has k separate symmetry orbits (it may contain m different face shapes, for m = k , or only for some m < k ).
Platonic co-parenting is when adults who aren't romantically linked agree to raise a child together. Some people choose lifelong friends, while others may even pay an online service to find a ...
This equation, stated by Euler in 1758, [3] is known as Euler's polyhedron formula. [4] It corresponds to the Euler characteristic of the sphere (i.e. = ), and applies identically to spherical polyhedra. An illustration of the formula on all Platonic polyhedra is given below.