Search results
Results From The WOW.Com Content Network
An immersion is precisely a local embedding – that is, for any point x ∈ M there is a neighbourhood, U ⊆ M, of x such that f : U → N is an embedding, and conversely a local embedding is an immersion. [3] For infinite dimensional manifolds, this is sometimes taken to be the definition of an immersion. [4]
On-the-job training (widely known as OJT) is an important topic of human resource management. It helps develop the career of the individual and the prosperous growth of the organization. On-the-job training is a form of training provided at the workplace. During the training, employees are familiarized with the working environment they will ...
If f: M → N is a submersion at p and f(p) = q ∈ N, then there exists an open neighborhood U of p in M, an open neighborhood V of q in N, and local coordinates (x 1, …, x m) at p and (x 1, …, x n) at q such that f(U) = V, and the map f in these local coordinates is the standard projection
An example of a Riemannian submersion arises when a Lie group acts isometrically, freely and properly on a Riemannian manifold (,). The projection π : M → N {\displaystyle \pi :M\rightarrow N} to the quotient space N = M / G {\displaystyle N=M/G} equipped with the quotient metric is a Riemannian submersion.
A result is called "deep" if its proof requires concepts and methods that are advanced beyond the concepts needed to formulate the result. For example, the prime number theorem — originally proved using techniques of complex analysis — was once thought to be a deep result until elementary proofs were found. [1]
The notion of a closed immersion is local in the sense that f is a closed immersion if and only if for some (equivalently every) open covering = the induced map : is a closed immersion. [ 5 ] [ 6 ] If the composition Z → Y → X {\displaystyle Z\to Y\to X} is a closed immersion and Y → X {\displaystyle Y\to X} is separated , then Z → Y ...
The technical statement appearing in Nash's original paper is as follows: if M is a given m-dimensional Riemannian manifold (analytic or of class C k, 3 ≤ k ≤ ∞), then there exists a number n (with n ≤ m(3m+11)/2 if M is a compact manifold, and with n ≤ m(m+1)(3m+11)/2 if M is a non-compact manifold) and an isometric embedding ƒ: M → R n (also analytic or of class C k). [15]
For example, in the real numbers, the squaring operation only produces non-negative numbers; the codomain is the set of real numbers, but the range is the non-negative numbers. Operations can involve dissimilar objects: a vector can be multiplied by a scalar to form another vector (an operation known as scalar multiplication ), [ 13 ] and the ...