Search results
Results From The WOW.Com Content Network
The orthogonal Procrustes problem [1] is a matrix approximation problem in linear algebra. In its classical form, one is given two matrices A {\displaystyle A} and B {\displaystyle B} and asked to find an orthogonal matrix Ω {\displaystyle \Omega } which most closely maps A {\displaystyle A} to B {\displaystyle B} .
In computer science, the matrix mortality problem (or mortal matrix problem) is a decision problem that asks, given a finite set of n×n matrices with integer coefficients, whether the zero matrix can be expressed as a finite product of matrices from this set. The matrix mortality problem is known to be undecidable when n ≥ 3 [1].
"The linear complementarity problem, sufficient matrices, and the criss-cross method" (PDF). Linear Algebra and Its Applications. 187: 1– 14. doi: 10.1016/0024-3795(93)90124-7. Murty, Katta G. (January 1972). "On the number of solutions to the complementarity problem and spanning properties of complementary cones" (PDF).
Decomposition: = where C is an m-by-r full column rank matrix and F is an r-by-n full row rank matrix Comment: The rank factorization can be used to compute the Moore–Penrose pseudoinverse of A , [ 2 ] which one can apply to obtain all solutions of the linear system A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } .
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
The problem to determine all positive integers such that the concatenation of and in base uses at most distinct characters for and fixed [citation needed] and many other problems in the coding theory are also the unsolved problems in mathematics.
The online vector-matrix-vector problem (OuMv) is a variant of OMv where the algorithm receives, at each round , two Boolean vectors and , and returns the product . This version has the benefit of returning a Boolean value at each round instead of a vector of an n {\displaystyle n} -dimensional Boolean vector.
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...