When.com Web Search

  1. Ads

    related to: heat exchanger parallel vs counterflow

Search results

  1. Results From The WOW.Com Content Network
  2. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    Starting from the differential equations that describe heat transfer, several "simple" correlations between effectiveness and NTU can be made. [2] For brevity, below summarizes the Effectiveness-NTU correlations for some of the most common flow configurations: For example, the effectiveness of a parallel flow heat exchanger is calculated with:

  3. Heat exchanger - Wikipedia

    en.wikipedia.org/wiki/Heat_exchanger

    In counter-flow heat exchangers the fluids enter the exchanger from opposite ends. The counter current design is the most efficient, in that it can transfer the most heat from the heat (transfer) medium per unit mass due to the fact that the average temperature difference along any unit length is higher .

  4. Countercurrent exchange - Wikipedia

    en.wikipedia.org/wiki/Countercurrent_exchange

    It is a kind of exchange using counter flow arrangement. The maximum amount of heat or mass transfer that can be obtained is higher with countercurrent than co-current (parallel) exchange because countercurrent maintains a slowly declining difference or gradient (usually temperature or concentration difference). In cocurrent exchange the ...

  5. Plate-fin heat exchanger - Wikipedia

    en.wikipedia.org/wiki/Plate-fin_heat_exchanger

    In parallel flow, fluids enter the heat exchanger through their tubes, and the fluids flow in the same direction. In counterflow, the fluids flow in opposing directions. Counterflow provides the most efficient transfer of heat, as it is able to transfer the most heat from the heat transfer medium.

  6. Logarithmic mean temperature difference - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_mean...

    In a cross-flow, in which one system, usually the heat sink, has the same nominal temperature at all points on the heat transfer surface, a similar relation between exchanged heat and LMTD holds, but with a correction factor. A correction factor is also required for other more complex geometries, such as a shell and tube exchanger with baffles.

  7. Concentric tube heat exchanger - Wikipedia

    en.wikipedia.org/wiki/Concentric_tube_heat_exchanger

    Concentric Tube (or Pipe) Heat Exchangers are used in a variety of industries for purposes such as material processing, food preparation, and air-conditioning. [1] They create a temperature driving force by passing fluid streams of different temperatures parallel to each other, separated by a physical boundary in the form of a pipe.

  8. Recuperator - Wikipedia

    en.wikipedia.org/wiki/Recuperator

    Types of recuperator, or cross plate heat exchanger. A recuperator (electro- end carbogidro-) - is a special purpose counter-flow energy recovery heat exchanger positioned within the supply and exhaust air streams of an air handling system, or in the exhaust gases of an industrial process, in order to recover the waste heat. Generally, they are ...

  9. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    One common example of a heat exchanger is a car's radiator, in which the hot coolant fluid is cooled by the flow of air over the radiator's surface. [34] [35] Common types of heat exchanger flows include parallel flow, counter flow, and cross flow.