Search results
Results From The WOW.Com Content Network
The polynomial remainder theorem may be used to evaluate () by calculating the remainder, . Although polynomial long division is more difficult than evaluating the function itself, synthetic division is computationally easier. Thus, the function may be more "cheaply" evaluated using synthetic division and the polynomial remainder theorem.
In the above theorem, each of the four integers has a name of its own: a is called the dividend, b is called the divisor, q is called the quotient and r is called the remainder. The computation of the quotient and the remainder from the dividend and the divisor is called division, or in case of ambiguity, Euclidean division.
The number q is called the quotient, while r is called the remainder. (For a proof of this result, see Euclidean division. For algorithms describing how to calculate the remainder, see Division algorithm.) The remainder, as defined above, is called the least positive remainder or simply the remainder. [2]
If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q(x) is simply the quotient obtained from the division process; since r is known to be a root of P(x), it is known that the remainder must be zero.
This is the form of the remainder term mentioned after the actual statement of Taylor's theorem with remainder in the mean value form. The Lagrange form of the remainder is found by choosing () = + and the Cauchy form by choosing () =. Remark.
In each step k of the Euclidean algorithm, the quotient q k and remainder r k are computed for a given pair of integers r k−2 and r k−1. r k−2 = q k r k−1 + r k. The computational expense per step is associated chiefly with finding q k, since the remainder r k can be calculated quickly from r k−2, r k−1, and q k. r k = r k−2 − q ...
Remainder theorem may refer to: Polynomial remainder theorem; Chinese remainder theorem This page was last edited on 29 December 2019, at 22:03 (UTC). Text is ...
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.