When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Enthalpy - Wikipedia

    en.wikipedia.org/wiki/Enthalpy

    Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.

  3. Excess property - Wikipedia

    en.wikipedia.org/wiki/Excess_property

    The pure component's molar volume and molar enthalpy are equal to the corresponding partial molar quantities because there is no volume or internal energy change on mixing for an ideal solution. The molar volume of a mixture can be found from the sum of the excess volumes of the components of a mixture:

  4. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Thermodynamic equations are now used to express the relationships between the state parameters at these different equilibrium state. The concept which governs the path that a thermodynamic system traces in state space as it goes from one equilibrium state to another is that of entropy.

  5. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    The sum of the entropies of the initially isolated systems is less than or equal to the total entropy of the final combination. Equality occurs just when the two original systems have all their respective intensive variables (temperature, pressure) equal; then the final system also has the same values.

  6. Principle of minimum energy - Wikipedia

    en.wikipedia.org/wiki/Principle_of_minimum_energy

    The Helmholtz free energy is a useful quantity when studying thermodynamic transformations in which the temperature is held constant. Although the reduction in the number of variables is a useful simplification, the main advantage comes from the fact that the Helmholtz free energy is minimized at equilibrium with respect to any unconstrained ...

  7. Conjugate variables (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Conjugate_variables...

    In a similar way, temperature differences drive changes in entropy, and their product is the energy transferred by heat transfer. The thermodynamic force is always an intensive variable and the displacement is always an extensive variable, yielding an extensive energy. The intensive (force) variable is the derivative of the (extensive) internal ...

  8. Thermochemical equation - Wikipedia

    en.wikipedia.org/wiki/Thermochemical_equation

    Enthalpy is the transfer of energy in a reaction (for chemical reactions, it is in the form of heat) and is the change in enthalpy. Δ H {\displaystyle \Delta H} is a state function, meaning that Δ H {\displaystyle \Delta H} is independent of processes occurring between initial and final states.

  9. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    Figure 1. A thermodynamic model system. Differences in pressure, density, and temperature of a thermodynamic system tend to equalize over time. For example, in a room containing a glass of melting ice, the difference in temperature between the warm room and the cold glass of ice and water is equalized by energy flowing as heat from the room to the cooler ice and water mixture.