Search results
Results From The WOW.Com Content Network
Videos for all of these courses are available online. In addition, Susskind has made available video lectures over a range of supplement subject areas including: advanced quantum mechanics, the Higgs boson, quantum entanglement, string theory, and black holes. The full series delivers over 100 lectures amounting to something on the order of 200 ...
Leonard I. Schiff (1968) Quantum Mechanics McGraw-Hill Education; Davydov A.S. (1965) Quantum Mechanics Pergamon ISBN 9781483172026; Shankar, Ramamurti (2011). Principles of Quantum Mechanics (2nd ed.). Plenum Press. ISBN 978-0306447907. von Neumann, John (2018). Nicholas A. Wheeler (ed.). Mathematical Foundations of Quantum Mechanics ...
Modern Quantum Mechanics, often called Sakurai or Sakurai and Napolitano, is a standard graduate-level quantum mechanics textbook written originally by J. J. Sakurai and edited by San Fu Tuan in 1985, with later editions coauthored by Jim Napolitano.
The phenomenology of quantum physics arose roughly between 1895 and 1915, and for the 10 to 15 years before the development of quantum mechanics (around 1925) physicists continued to think of quantum theory within the confines of what is now called classical physics, and in particular within the same mathematical structures.
In the words of quantum physicist Richard Feynman, quantum mechanics deals with "nature as She is—absurd". [4] Features of quantum mechanics often defy simple explanations in everyday language. One example of this is the uncertainty principle: precise measurements of position cannot be combined with precise measurements of velocity.
The most fundamental equation to describe any quantum phenomenon, including scattering, is the Schrödinger equation. In physical problems, this differential equation must be solved with the input of an additional set of initial and/or boundary conditions for the specific physical system studied.
The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics.It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.
One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] ‖ ‖ = | |.