Search results
Results From The WOW.Com Content Network
Graphical illustration of algorithm, using a three-way railroad junction. The input is processed one symbol at a time: if a variable or number is found, it is copied directly to the output a), c), e), h). If the symbol is an operator, it is pushed onto the operator stack b), d), f).
Video: Keys pressed for calculating eight times six on a HP-32SII (employing RPN) from 1991. Reverse Polish notation (RPN), also known as reverse Ćukasiewicz notation, Polish postfix notation or simply postfix notation, is a mathematical notation in which operators follow their operands, in contrast to prefix or Polish notation (PN), in which operators precede their operands.
In computer science, an operator-precedence parser is a bottom-up parser that interprets an operator-precedence grammar.For example, most calculators use operator-precedence parsers to convert from the human-readable infix notation relying on order of operations to a format that is optimized for evaluation such as Reverse Polish notation (RPN).
Infix notation is the notation commonly used in arithmetical and logical formulae and statements. It is characterized by the placement of operators between operands —"infixed operators"—such as the plus sign in 2 + 2 .
Immediate-execution calculators are based on a mixture of infix and postfix notation: binary operations are done as infix, but unary operations are postfix. Because operators are applied one-at-a-time, the user must work out which operator key to use at each stage, and this can lead to problems.
Most stack-oriented languages operate in postfix or Reverse Polish notation: arguments or parameters for a command are listed before that command. For example, postfix notation would be written 2, 3, multiply instead of multiply, 2, 3 (prefix or Polish notation), or 2 multiply 3 (infix notation).
Calculators that employ reverse Polish notation use a stack structure to hold values. Expressions can be represented in prefix, postfix or infix notations and conversion from one form to another may be accomplished using a stack. Many compilers use a stack to parse syntax before translation into low-level code.
A postfix operator immediately succeeds its operand, as in x! for instance. An infix operator is positioned in between a left and a right operand, as in x+y. Some languages, most notably the C-syntax family, stretches this conventional terminology and speaks also of ternary infix operators (a?b:c). Theoretically it would even be possible (but ...