Search results
Results From The WOW.Com Content Network
Examples of differential equations; Autonomous system (mathematics) Picard–Lindelöf theorem; Peano existence theorem; Carathéodory existence theorem; Numerical ordinary differential equations; Bendixson–Dulac theorem; Gradient conjecture; Recurrence plot; Limit cycle; Initial value problem; Clairaut's equation; Singular solution ...
Static problem For a set of N numbers find the maximal one. The problem may be solved in O(N) time. Dynamic problem For an initial set of N numbers, dynamically maintain the maximal one when insertion and deletions are allowed. A well-known solution for this problem is using a self-balancing binary search tree. It takes space O(N), may be ...
Linear dynamical systems are dynamical systems whose evolution functions are linear.While dynamical systems, in general, do not have closed-form solutions, linear dynamical systems can be solved exactly, and they have a rich set of mathematical properties.
The Soluble Problems of Rigid Dynamics: 7 Theory of Vibrations: 8 Non-Holonomic Systems, Dissipative Systems: 9 The Principles of Least Action and Least Curvature: 10 Hamiltonian Systems and their Integral-Invariants: 11 The Transformation-Theory of Dynamics: 12 The Properties of the Integrals of Dynamic Systems: 13 The Reduction of the Problem ...
The Riemann problem is very useful for the understanding of equations like Euler conservation equations because all properties, such as shocks and rarefaction waves, appear as characteristics in the solution. It also gives an exact solution to some complex nonlinear equations, such as the Euler equations.
Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems.Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does ...
One example is the planetary movement of three bodies: while there is no closed-form solution to the general problem, Poincaré showed for the first time that it exhibits deterministic chaos. Formally, a Hamiltonian system is a dynamical system characterised by the scalar function H ( q , p , t ) {\displaystyle H({\boldsymbol {q}},{\boldsymbol ...
The Newmark-beta method is a method of numerical integration used to solve certain differential equations.It is widely used in numerical evaluation of the dynamic response of structures and solids such as in finite element analysis to model dynamic systems.