Search results
Results From The WOW.Com Content Network
An illustration of the five-point stencil in one and two dimensions (top, and bottom, respectively). In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors".
Nevertheless, Newton and Leibniz remain key figures in the history of differentiation, not least because Newton was the first to apply differentiation to theoretical physics, while Leibniz systematically developed much of the notation still used today. Since the 17th century many mathematicians have contributed to the theory of differentiation.
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction—each of which may lead to a simplified ...
The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.
The Carlitz derivative is an operation similar to usual differentiation but with the usual context of real or complex numbers changed to local fields of positive characteristic in the form of formal Laurent series with coefficients in some finite field F q (it is known that any local field of positive characteristic is isomorphic to a Laurent ...
For example, in attempting to find the maximum likelihood estimate of a multivariate normal distribution using matrix calculus, if the domain is a k×1 column vector, then the result using the numerator layout will be in the form of a 1×k row vector. Thus, either the results should be transposed at the end or the denominator layout (or mixed ...
Isaac Newton's notation for differentiation (also called the dot notation, fluxions, or sometimes, crudely, the flyspeck notation [12] for differentiation) places a dot over the dependent variable. That is, if y is a function of t, then the derivative of y with respect to t is
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.