Search results
Results From The WOW.Com Content Network
Almost all are local, accounting for all interactions between an atom and its neighbor up to some cutoff radius. These neural networks usually intake atomic coordinates and output potential energies. Atomic coordinates are sometimes transformed with atom-centered symmetry functions or pair symmetry functions before being fed into neural networks.
Almost all neural networks intake atomic coordinates and output potential energies. For some, these atomic coordinates are converted into atom-centered symmetry functions. From this data, a separate atomic neural network is trained for each element; each atomic network is evaluated whenever that element occurs in the given structure, and then ...
The Hubbard model introduces short-range interactions between electrons to the tight-binding model, which only includes kinetic energy (a "hopping" term) and interactions with the atoms of the lattice (an "atomic" potential). When the interaction between electrons is strong, the behavior of the Hubbard model can be qualitatively different from ...
The Sommerfeld model predicted that the magnetic moment of an atom measured along an axis will only take on discrete values, a result which seems to contradict rotational invariance but which was confirmed by the Stern–Gerlach experiment. This was a significant step in the development of quantum mechanics.
Hydrogen atomic orbitals of different energy levels. The more opaque areas are where one is most likely to find an electron at any given time. In quantum mechanics, a spherically symmetric potential is a system of which the potential only depends on the radial distance from the spherical center and a location in space.
In order to solve the equation of an electron in a spherical potential, Hartree first introduced atomic units to eliminate physical constants. Then he converted the Laplacian from Cartesian to spherical coordinates to show that the solution was a product of a radial function () / and a spherical harmonic with an angular quantum number , namely = (/) (,).
Figure 1: A comparison of Yukawa potentials where = and with various values for m. Figure 2: A "long-range" comparison of Yukawa and Coulomb potentials' strengths where =. If the particle has no mass (i.e., m = 0), then the Yukawa potential reduces to a Coulomb potential, and the range is said to be infinite. In fact, we have:
In atomic physics, the chemical potential of the electrons in an atom is sometimes [21] said to be the negative of the atom's electronegativity. Likewise, the process of chemical potential equalization is sometimes referred to as the process of electronegativity equalization. This connection comes from the Mulliken electronegativity scale.