When.com Web Search

  1. Ad

    related to: shear strength of reinforced concrete

Search results

  1. Results From The WOW.Com Content Network
  2. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    In structural and mechanical engineering, the shear strength of a component is important for designing the dimensions and materials to be used for the manufacture or construction of the component (e.g. beams, plates, or bolts). In a reinforced concrete beam, the main purpose of reinforcing bar (rebar) stirrups is to increase the shear strength.

  3. Reinforced concrete - Wikipedia

    en.wikipedia.org/wiki/Reinforced_concrete

    Reinforced concrete, also called ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility.

  4. Properties of concrete - Wikipedia

    en.wikipedia.org/wiki/Properties_of_concrete

    Twenty eight days is a long wait to determine if desired strengths are going to be obtained, so three-day and seven-day strengths can be useful to predict the ultimate 28-day compressive strength of the concrete. A 25% strength gain between 7 and 28 days is often observed with 100% OPC (ordinary Portland cement) mixtures, and between 25% and 40 ...

  5. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  6. Voided biaxial slab - Wikipedia

    en.wikipedia.org/wiki/Voided_biaxial_slab

    For slabs using spherical voids, the shear resistance is approximately proportional to the volume of concrete, as the geometry of the voids causes efficient transfer of force to load-bearing parts, enabling all the concrete to be effective. Other shapes of voids, with flat or flattened surfaces, will result in more concrete and/or less strength.

  7. Size effect on structural strength - Wikipedia

    en.wikipedia.org/wiki/Size_Effect_on_Structural...

    A pronounced energetic size effect occurs in shear, torsional and punching failures of reinforced concrete, in pullout of anchors from concrete, in compression failure of slender reinforced concrete columns and prestressed concrete beams, in compression and tensile failures of fiber-polymer composites and sandwich structures, and in the ...

  8. Modified compression field theory - Wikipedia

    en.wikipedia.org/wiki/Modified_Compression_Field...

    The modified compression field theory (MCFT) is a general model for the load-deformation behaviour of two-dimensional cracked reinforced concrete subjected to shear. It models concrete considering concrete stresses in principal directions summed with reinforcing stresses assumed to be only axial.

  9. T-beam - Wikipedia

    en.wikipedia.org/wiki/T-beam

    Unlike an I-beam, a T-beam lacks a bottom flange, which carries savings in terms of materials, but at the loss of resistance to tensile forces. [5] T- beam designs come in many sizes, lengths and widths to suit where they are to be used (eg highway bridge, underground parking garage) and how they have to resist the tension, compression and shear stresses associated with beam bending in their ...