Search results
Results From The WOW.Com Content Network
The formula provides a natural generalization of the Coulomb's law for cases where the source charge is moving: = [′ ′ + ′ (′ ′) + ′] = ′ Here, and are the electric and magnetic fields respectively, is the electric charge, is the vacuum permittivity (electric field constant) and is the speed of light.
Mathematically, we can state the law of charge conservation as a continuity equation: = ˙ ˙ (). where / is the electric charge accumulation rate in a specific volume at time t, ˙ is the amount of charge flowing into the volume and ˙ is the amount of charge flowing out of the volume; both amounts are regarded as generic functions of time.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Charge carrier density, also known as carrier concentration, denotes the number of charge carriers per volume. In SI units, it is measured in m −3. As with any density, in principle it can depend on position. However, usually carrier concentration is given as a single number, and represents the average carrier density over the whole material.
For a surface charge distribution (a good approximation for charge on a plate in a parallel plate capacitor) where (′) gives the charge per unit area at position ′, and ′ is an infinitesimal element of area, ′ = (′) ′.
This charge is sometimes called the Noether charge. Thus, for example, the electric charge is the generator of the U(1) symmetry of electromagnetism. The conserved current is the electric current. In the case of local, dynamical symmetries, associated with every charge is a gauge field; when quantized, the gauge field becomes a gauge boson. The ...
When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.
Charge number (denoted z) is a quantized and dimensionless quantity derived from electric charge, with the quantum of electric charge being the elementary charge (e, constant). The charge number equals the electric charge ( q , in coulombs ) divided by the elementary charge: z = q / e .