Ad
related to: polynomial time reduction example math definition worksheet
Search results
Results From The WOW.Com Content Network
A polynomial-time many-one reduction from a problem A to a problem B (both of which are usually required to be decision problems) is a polynomial-time algorithm for transforming inputs to problem A into inputs to problem B, such that the transformed problem has the same output as the original problem.
A polynomial-time counting reduction is usually used to transform instances of a known-hard problem into instances of another problem that is to be proven hard. It consists of two functions f {\displaystyle f} and g {\displaystyle g} , both of which must be computable in polynomial time .
In computational complexity theory, a PTAS reduction is an approximation-preserving reduction that is often used to perform reductions between solutions to optimization problems. It preserves the property that a problem has a polynomial time approximation scheme (PTAS) and is used to define completeness for certain classes of optimization ...
A polynomial-time many-one reduction from a problem A to a problem B (both of which are usually required to be decision problems) is a polynomial-time algorithm for transforming inputs to problem A into inputs to problem B, such that the transformed problem has the same output as the original problem.
In computational complexity theory, a computational problem H is called NP-hard if, for every problem L which can be solved in non-deterministic polynomial-time, there is a polynomial-time reduction from L to H. That is, assuming a solution for H takes 1 unit time, H ' s solution can be used to solve L in polynomial time.
Valiant's definition of completeness, and his proof of completeness of 01-permanent, both used polynomial-time Turing reductions. In this kind of reduction, a single hard instance of some other problem in #P is reduced to computing the permanent of a sequence of multiple graphs, each of which could potentially depend on the results of previous ...
In this diagram, problems are reduced from bottom to top. Note that this diagram is misleading as a description of the mathematical relationship between these problems, as there exists a polynomial-time reduction between any two NP-complete problems; but it indicates where demonstrating this polynomial-time reduction has been easiest.
A decision problem is NEXPTIME-complete if it is in NEXPTIME, and every problem in NEXPTIME has a polynomial-time many-one reduction to it. In other words, there is a polynomial-time algorithm that transforms instances of one to instances of the other with the same answer. Problems that are NEXPTIME-complete might be thought of as the hardest ...