When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial-time reduction - Wikipedia

    en.wikipedia.org/wiki/Polynomial-time_reduction

    In computational complexity theory, a polynomial-time reduction is a method for solving one problem using another. One shows that if a hypothetical subroutine solving the second problem exists, then the first problem can be solved by transforming or reducing it to inputs for the second problem and calling the subroutine one or more times.

  3. Polynomial-time counting reduction - Wikipedia

    en.wikipedia.org/wiki/Polynomial-time_counting...

    A polynomial-time counting reduction is usually used to transform instances of a known-hard problem into instances of another problem that is to be proven hard. It consists of two functions f {\displaystyle f} and g {\displaystyle g} , both of which must be computable in polynomial time .

  4. NP-hardness - Wikipedia

    en.wikipedia.org/wiki/NP-hardness

    In computational complexity theory, a computational problem H is called NP-hard if, for every problem L which can be solved in non-deterministic polynomial-time, there is a polynomial-time reduction from L to H. That is, assuming a solution for H takes 1 unit time, H ' s solution can be used to solve L in polynomial time.

  5. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    It runs in polynomial time on inputs that are in SUBSET-SUM if and only if P = NP: // Algorithm that accepts the NP-complete language SUBSET-SUM. // // this is a polynomial-time algorithm if and only if P = NP. // // "Polynomial-time" means it returns "yes" in polynomial time when // the answer should be "yes", and runs forever when it is "no".

  6. Many-one reduction - Wikipedia

    en.wikipedia.org/wiki/Many-one_reduction

    A polynomial-time many-one reduction from a problem A to a problem B (both of which are usually required to be decision problems) is a polynomial-time algorithm for transforming inputs to problem A into inputs to problem B, such that the transformed problem has the same output as the original problem.

  7. Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Algebraic_geometry

    Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems.Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

  8. Graph isomorphism problem - Wikipedia

    en.wikipedia.org/wiki/Graph_isomorphism_problem

    As is common for complexity classes within the polynomial time hierarchy, a problem is called GI-hard if there is a polynomial-time Turing reduction from any problem in GI to that problem, i.e., a polynomial-time solution to a GI-hard problem would yield a polynomial-time solution to the graph isomorphism problem (and so all problems in GI).

  9. Parsimonious reduction - Wikipedia

    en.wikipedia.org/wiki/Parsimonious_reduction

    Specific types of parsimonious reductions may be defined by the computational complexity or other properties of the transformation algorithm. For instance, a polynomial-time parsimonious reduction is one in which the transformation algorithm takes polynomial time. These are the types of reduction used to prove #P-Completeness. [1]