Search results
Results From The WOW.Com Content Network
The void pointer, or void*, is supported in ANSI C and C++ as a generic pointer type. A pointer to void can store the address of any object (not function), [a] and, in C, is implicitly converted to any other object pointer type on assignment, but it must be explicitly cast if dereferenced.
Function pointers allow different code to be executed at runtime. They can also be passed to a function to enable callbacks. Function pointers are supported by third-generation programming languages (such as PL/I, COBOL, Fortran, [1] dBASE dBL [clarification needed], and C) and object-oriented programming languages (such as C++, C#, and D). [2]
Smart pointers typically keep track of the memory they point to, and may also be used to manage other resources, such as network connections and file handles. Smart pointers were first popularized in the programming language C++ during the first half of the 1990s as rebuttal to criticisms of C++'s lack of automatic garbage collection. [1] [2]
This is a list of operators in the C and C++ programming languages.. All listed operators are in C++ and lacking indication otherwise, in C as well. Some tables include a "In C" column that indicates whether an operator is also in C. Note that C does not support operator overloading.
The d-pointer pattern is one of the implementations of the opaque pointer. It is commonly used in C++ classes due to its advantages (noted below). A d-pointer is a private data member of the class that points to an instance of a structure. This method allows class declarations to omit private data members, except for the d-pointer itself. [6]
In the C++ programming language, auto_ptr is an obsolete smart pointer class template that was available in previous versions of the C++ standard library (declared in the <memory> header file), which provides some basic RAII features for C++ raw pointers. It has been replaced by the unique_ptr class.
Added in C++11. In 32.9.1-1, this section describes components that a C++ program can use to retrieve in one thread the result (value or exception) from a function that has run in the same thread or another thread. <hazard_pointer> Added in C++26. Provides std::hazard_pointer. <latch> Added in C++20. Provides std::latch, a single-use thread ...
I think the point of the sentence in the article is that it is more efficient to store and manipulate pointers to objects in collections than to store and move the objects themselves. For example, an array of pointers to large objects is more efficient to rearrange (by moving the pointer elements around) than it would be to rearrange an array ...