Search results
Results From The WOW.Com Content Network
Substring.size (#1 (Substring.position substring (Substring.full string))) Standard ML: returns string length [string rangeOfString:substring].location: Objective-C (NSString * only) returns NSNotFound string.find(string, substring) (string):find(substring) Lua: returns nil string indexOfSubCollection: substring startingAt: startpos ifAbsent ...
In the array containing the E(x, y) values, we then choose the minimal value in the last row, let it be E(x 2, y 2), and follow the path of computation backwards, back to the row number 0. If the field we arrived at was E(0, y 1), then T[y 1 + 1] ... T[y 2] is a substring of T with the minimal edit distance to the pattern P.
A suffix can be seen as a special case of a substring. Example: The string nana is equal to a suffix (and substring and subsequence) of the string banana: banana |||| nana A suffix tree for a string is a trie data structure that represents all of its suffixes. Suffix trees have large numbers of applications in string algorithms.
The array L stores the length of the longest common suffix of the prefixes S[1..i] and T[1..j] which end at position i and j, respectively. The variable z is used to hold the length of the longest common substring found so far.
Every infinite sequence of real numbers has an infinite monotone subsequence (This is a lemma used in the proof of the Bolzano–Weierstrass theorem). Every infinite bounded sequence in R n {\displaystyle \mathbb {R} ^{n}} has a convergent subsequence (This is the Bolzano–Weierstrass theorem ).
Tree patterns are used in some programming languages as a general tool to process data based on its structure, e.g. C#, [1] F#, [2] Haskell, [3] Java [4], ML, Python, [5] Ruby, [6] Rust, [7] Scala, [8] Swift [9] and the symbolic mathematics language Mathematica have special syntax for expressing tree patterns and a language construct for ...
Ukkonen's 1985 algorithm takes a string p, called the pattern, and a constant k; it then builds a deterministic finite state automaton that finds, in an arbitrary string s, a substring whose edit distance to p is at most k [13] (cf. the Aho–Corasick algorithm, which similarly constructs an automaton to search for any of a number of patterns ...
The earliest known example of a de Bruijn sequence comes from Sanskrit prosody where, since the work of Pingala, each possible three-syllable pattern of long and short syllables is given a name, such as 'y' for short–long–long and 'm' for long–long–long.