When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Z-order curve - Wikipedia

    en.wikipedia.org/wiki/Z-order_curve

    The Z-ordering can be used to efficiently build a quadtree (2D) or octree (3D) for a set of points. [5] [6] The basic idea is to sort the input set according to Z-order.Once sorted, the points can either be stored in a binary search tree and used directly, which is called a linear quadtree, [7] or they can be used to build a pointer based quadtree.

  3. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    The latter is obtained by expanding the corresponding linear transformation matrix by one row and column, filling the extra space with zeros except for the lower-right corner, which must be set to 1. For example, the counter-clockwise rotation matrix from above becomes: [ cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ 0 0 0 1 ...

  4. Pauling's rules - Wikipedia

    en.wikipedia.org/wiki/Pauling's_rules

    For typical ionic solids, the cations are smaller than the anions, and each cation is surrounded by coordinated anions which form a polyhedron.The sum of the ionic radii determines the cation-anion distance, while the cation-anion radius ratio + / (or /) determines the coordination number (C.N.) of the cation, as well as the shape of the coordinated polyhedron of anions.

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space is defined similarly. The row space and the column space of a matrix A are sometimes denoted as C(A T) and C(A) respectively. [2] This article considers matrices of real numbers. The row and column spaces are subspaces of the real spaces and respectively. [3]

  6. Bond valence method - Wikipedia

    en.wikipedia.org/wiki/Bond_valence_method

    If the structure is not known, the average bond valence, S a can be calculated from the atomic valence, V, if the coordination number, N, of the atom is known using Eq. 3. = / (Eq. 3) If the coordination number is not known, a typical coordination number for the atom can be used instead.

  7. Close-packing of equal spheres - Wikipedia

    en.wikipedia.org/wiki/Close-packing_of_equal_spheres

    The first sphere of this row only touches one sphere in the original row, but its location follows suit with the rest of the row. The next row follows this pattern of shifting the x-coordinate by r and the y-coordinate by √ 3. Add rows until reaching the x and y maximum borders of the box.

  8. Coordination number - Wikipedia

    en.wikipedia.org/wiki/Coordination_number

    The most common coordination number for d-block transition metal complexes is 6. The coordination number does not distinguish the geometry of such complexes, i.e. octahedral vs trigonal prismatic. For transition metal complexes, coordination numbers range from 2 (e.g., Au I in Ph 3 PAuCl) to 9 (e.g., Re VII in [ReH 9] 2−).

  9. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    Even though the row is indicated by the first index and the column by the second index, no grouping order between the dimensions is implied by this. The choice of how to group and order the indices, either by row-major or column-major methods, is thus a matter of convention. The same terminology can be applied to even higher dimensional arrays.