When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  3. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    Example: sin(0.755) ⁡ = ⁡ (+) ⁡ + ⁡ () + () where the values for sin(0.75) and cos(0.75) are obtained from trigonometric table. The result is accurate to the four digits given. The result is accurate to the four digits given.

  4. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...

  5. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    By the periodicity identities we can say if the formula is true for −π < θ ≤ π then it is true for all real θ. Next we prove the identity in the range ⁠ π / 2 ⁠ < θ ≤ π. To do this we let t = θ − ⁠ π / 2 ⁠, t will now be in the range 0 < t ≤ π/2. We can then make use of squared versions of some basic shift identities ...

  6. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    If the denominator, b, is multiplied by additional factors of 2, the sine and cosine can be derived with the half-angle formulas. For example, 22.5° ( π /8 rad) is half of 45°, so its sine and cosine are: [ 11 ]

  7. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The terms tangent and secant were first introduced by the Danish mathematician Thomas Fincke in his book Geometria rotundi (1583). [36] The 17th century French mathematician Albert Girard made the first published use of the abbreviations sin, cos, and tan in his book Trigonométrie. [37]

  8. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    The cosine double angle formula implies that sin 2 and cos 2 are, themselves, shifted and scaled sine waves. Specifically, [ 27 ] sin 2 ⁡ ( θ ) = 1 − cos ⁡ ( 2 θ ) 2 cos 2 ⁡ ( θ ) = 1 + cos ⁡ ( 2 θ ) 2 {\displaystyle \sin ^{2}(\theta )={\frac {1-\cos(2\theta )}{2}}\qquad \cos ^{2}(\theta )={\frac {1+\cos(2\theta )}{2}}} The graph ...

  9. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    We conclude that for 0 < θ < ⁠ 1 / 2 ⁠ π, the quantity sin(θ)/θ is always less than 1 and always greater than cos(θ). Thus, as θ gets closer to 0, sin(θ)/θ is "squeezed" between a ceiling at height 1 and a floor at height cos θ, which rises towards 1; hence sin(θ)/θ must tend to 1 as θ tends to 0 from the positive side: