Search results
Results From The WOW.Com Content Network
Static problem For a set of N numbers find the maximal one. The problem may be solved in O(N) time. Dynamic problem For an initial set of N numbers, dynamically maintain the maximal one when insertion and deletions are allowed. A well-known solution for this problem is using a self-balancing binary search tree. It takes space O(N), may be ...
Examples of differential equations; Autonomous system (mathematics) Picard–Lindelöf theorem; Peano existence theorem; Carathéodory existence theorem; Numerical ordinary differential equations; Bendixson–Dulac theorem; Gradient conjecture; Recurrence plot; Limit cycle; Initial value problem; Clairaut's equation; Singular solution ...
If the solution to any problem can be formulated recursively using the solution to its sub-problems, and if its sub-problems are overlapping, then one can easily memoize or store the solutions to the sub-problems in a table (often an array or hashtable in practice). Whenever we attempt to solve a new sub-problem, we first check the table to see ...
Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems.Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does ...
The concept of a dynamical system has its origins in Newtonian mechanics.There, as in other natural sciences and engineering disciplines, the evolution rule of dynamical systems is an implicit relation that gives the state of the system for only a short time into the future.
A gambler has $2, she is allowed to play a game of chance 4 times and her goal is to maximize her probability of ending up with a least $6. If the gambler bets $ on a play of the game, then with probability 0.4 she wins the game, recoup the initial bet, and she increases her capital position by $; with probability 0.6, she loses the bet amount $; all plays are pairwise independent.
The first applications of computer simulations for dynamic systems was in the aerospace industry. [5] Commercial uses of dynamic simulation are many and range from nuclear power, steam turbines, 6 degrees of freedom vehicle modeling, electric motors, econometric models, biological systems, robot arms, mass-spring-damper systems, hydraulic systems, and drug dose migration through the human body ...
System dynamics is a methodology and mathematical modeling technique to frame, understand, and discuss complex issues and problems. Originally developed in the 1950s to help corporate managers improve their understanding of industrial processes, SD is currently being used throughout the public and private sector for policy analysis and design.