When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Diagonalizable matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonalizable_matrix

    The fundamental fact about diagonalizable maps and matrices is expressed by the following: An matrix over a field is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to , which is the case if and only if there exists a basis of consisting of eigenvectors of .

  3. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    An n × n matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces is n. Or, equivalently, if and only if A has n linearly independent eigenvectors. Not all matrices are diagonalizable; matrices that are not diagonalizable are called defective matrices. Consider the following matrix:

  4. Normal matrix - Wikipedia

    en.wikipedia.org/wiki/Normal_matrix

    It is possible to give a fairly long list of equivalent definitions of a normal matrix. Let A be a n × n complex matrix. Then the following are equivalent: A is normal. A is diagonalizable by a unitary matrix. There exists a set of eigenvectors of A which forms an orthonormal basis for C n.

  5. Anti-diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Anti-diagonal_matrix

    Furthermore, the product of an anti-diagonal matrix with a diagonal matrix is anti-diagonal, as is the product of a diagonal matrix with an anti-diagonal matrix. An anti-diagonal matrix is invertible if and only if the entries on the diagonal from the lower left corner to the upper right corner are nonzero. The inverse of any invertible anti ...

  6. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    This characteristic allows spectral matrices to be fully diagonalizable, meaning they can be decomposed into simpler forms using eigendecomposition. This decomposition process reveals fundamental insights into the matrix's structure and behavior, particularly in fields such as quantum mechanics, signal processing, and numerical analysis. [6]

  7. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A square matrix that does not have a complete basis of eigenvectors, and is thus not diagonalizable. Derogatory matrix: A square matrix whose minimal polynomial is of order less than n. Equivalently, at least one of its eigenvalues has at least two Jordan blocks. [3] Diagonalizable matrix: A square matrix similar to a diagonal matrix.

  8. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Top: The action of M, indicated by its effect on the unit disc D and the two canonical unit vectors e 1 and e 2. Left: The action of V ⁎, a rotation, on D, e 1, and e 2. Bottom: The action of Σ, a scaling by the singular values σ 1 horizontally and σ 2 vertically.

  9. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    The term diagonal matrix may sometimes refer to a rectangular diagonal matrix, which is an m-by-n matrix with all the entries not of the form d i,i being zero. For example: [ 1 0 0 0 4 0 0 0 − 3 0 0 0 ] or [ 1 0 0 0 0 0 4 0 0 0 0 0 − 3 0 0 ] {\displaystyle {\begin{bmatrix}1&0&0\\0&4&0\\0&0&-3\\0&0&0\\\end{bmatrix}}\quad {\text{or}}\quad ...