Search results
Results From The WOW.Com Content Network
Longitudinal sound waves are waves of alternating pressure deviations from the equilibrium pressure, causing local regions of compression and rarefaction, while transverse waves (in solids) are waves of alternating shear stress at right angle to the direction of propagation. Sound waves may be viewed using parabolic mirrors and objects that ...
An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...
The other main type of wave is the transverse wave, in which the displacements of the medium are at right angles to the direction of propagation. Transverse waves, for instance, describe some bulk sound waves in solid materials (but not in fluids ); these are also called " shear waves" to differentiate them from the (longitudinal) pressure ...
The "direction of wave propagation" is the direction of a wave's energy flow, and the direction that a small wave packet will move, i.e. the direction of the group velocity. For light waves in vacuum, this is also the direction of the Poynting vector. On the other hand, the wave vector points in the direction of phase velocity.
Swedish soldiers operating an acoustic locator in 1940. Acoustic location is a method of determining the position of an object or sound source by using sound waves. Location can take place in gases (such as the atmosphere), liquids (such as water), and in solids (such as in the earth).
In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...
Sound is introduced at one end of the tube by forcing the pressure to vary in the direction of propagation, which causes a pressure gradient to travel perpendicular to the cross section at the speed of sound. When the wave reaches the end of the transmission line, its behaviour depends on what is present at the end of the line.
The direction of the wave vector is the direction of the wave propagation and the phonon polarization vector gives the direction in which the atoms vibrate. Actually, in general, the wave velocity in a crystal is different for different directions of k. In other words, most crystals are anisotropic for phonon propagation.