Ad
related to: the troposphere
Search results
Results From The WOW.Com Content Network
Atop the troposphere is the tropopause, which is the functional atmospheric border that demarcates the troposphere from the stratosphere. As such, because the tropopause is an inversion layer in which air-temperature increases with altitude, the temperature of the tropopause remains constant. [ 2 ]
Ozone in the troposhere is determined by photochemical production and destruction, dry deposition and cross-tropopause transport of ozone from the stratosphere. [2] In the Arctic troposphere, transport and photochemical reactions involving nitrogen oxides and volatile organic compounds (VOCs) as a result of human emissions also produce ozone resulting in a background mixing ratio of 30 to 50 ...
The troposphere is the lowest layer of the Earth's atmosphere; it starts at the planetary boundary layer, and is the layer in which most weather phenomena occur. The troposphere contains the boundary layer, and ranges in height from an average of 9 km (5.6 mi; 30,000 ft) at the poles, to 17 km (11 mi; 56,000 ft) at the Equator.
The envelope of gas surrounding the Earth changes from the ground up. Five distinct layers have been identified, the troposphere, stratosphere, mesosphere, thermosphere and exosphere.
Ground-level ozone (O 3), also known as surface-level ozone and tropospheric ozone, is a trace gas in the troposphere (the lowest level of the Earth's atmosphere), with an average concentration of 20–30 parts per billion by volume (ppbv), with close to 100 ppbv in polluted areas.
The high-speed polar jet stream typically spins at a height of 5 to 9 miles above the Earth’s surface, in the lower layer of the atmosphere known as the troposphere.
The troposphere is denser than all its overlying layers because a larger atmospheric weight sits on top of the troposphere and causes it to be most severely compressed. Fifty percent of the total mass of the atmosphere is located in the lower 5.6 km (3.5 mi; 18,000 ft) of the troposphere.
Above the troposphere, stratospheric and mesospheric clouds have their own classifications with common names for the major types and alpha-numeric nomenclature for the subtypes. They are characterized by altitude as very high level (polar stratospheric) and extreme level (polar mesospheric).