Ads
related to: constant acceleration equation example questions worksheet pdfstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
These equations can be used only when acceleration is constant. If acceleration is not constant then the general calculus equations above must be used, found by integrating the definitions of position, velocity and acceleration (see above).
For a body moving in a circle of radius at a constant speed , its acceleration has a magnitude = and is directed toward the center of the circle. [ note 9 ] The force required to sustain this acceleration, called the centripetal force , is therefore also directed toward the center of the circle and has magnitude m v 2 / r {\displaystyle mv^{2}/r} .
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
An equation for the acceleration can be derived by analyzing forces. Assuming a massless, inextensible string and an ideal massless pulley, the only forces to consider are: tension force (T), and the weight of the two masses (W 1 and W 2). To find an acceleration, consider the forces affecting each individual mass.
In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where
Hyperbolic motion is the motion of an object with constant proper acceleration in special relativity. It is called hyperbolic motion because the equation describing the path of the object through spacetime is a hyperbola , as can be seen when graphed on a Minkowski diagram whose coordinates represent a suitable inertial (non-accelerated) frame.