When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nonagon - Wikipedia

    en.wikipedia.org/wiki/Nonagon

    In geometry, a nonagon (/ ˈ n ɒ n ə ɡ ɒ n /) or enneagon (/ ˈ ɛ n i ə ɡ ɒ n /) is a nine-sided polygon or 9-gon. The name nonagon is a prefix hybrid formation , from Latin ( nonus , "ninth" + gonon ), used equivalently, attested already in the 16th century in French nonogone and in English from the 17th century.

  3. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...

  4. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    As n approaches infinity, the internal angle approaches 180 degrees. For a regular polygon with 10,000 sides (a myriagon) the internal angle is 179.964°. As the number of sides increases, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle.

  5. Octadecagon - Wikipedia

    en.wikipedia.org/wiki/Octadecagon

    A regular triangle, nonagon, and octadecagon can completely surround a point in the plane, one of 17 different combinations of regular polygons with this property. [7] However, this pattern cannot be extended to an Archimedean tiling of the plane: because the triangle and the nonagon both have an odd number of sides, neither of them can be ...

  6. Hendecagon - Wikipedia

    en.wikipedia.org/wiki/Hendecagon

    A regular hendecagon is represented by Schläfli symbol {11}.. A regular hendecagon has internal angles of 147. 27 degrees (=147 degrees). [5] The area of a regular hendecagon with side length a is given by [2]

  7. Icositetragon - Wikipedia

    en.wikipedia.org/wiki/Icositetragon

    One interior angle in a regular icositetragon is 165°, meaning that one exterior angle would be 15°.. The area of a regular icositetragon is: (with t = edge length) = ⁡ = (+ + +).

  8. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    If p = 2, draw a q-gon and bisect one of its central angles. From this, a 2q-gon can be constructed. If p > 2, inscribe a p-gon and a q-gon in the same circle in such a way that they share a vertex. Because p and q are coprime, there exists integers a and b such that ap + bq = 1. Then 2aπ/q + 2bπ/p = 2π/pq.

  9. Heptagon - Wikipedia

    en.wikipedia.org/wiki/Heptagon

    The area (A) of a regular heptagon of side length a is given by: A = 7 4 a 2 cot ⁡ π 7 ≃ 3.634 a 2 . {\displaystyle A={\frac {7}{4}}a^{2}\cot {\frac {\pi }{7}}\simeq 3.634a^{2}.} This can be seen by subdividing the unit-sided heptagon into seven triangular "pie slices" with vertices at the center and at the heptagon's vertices, and then ...