Ad
related to: adenosine inhibitory effect on brain function due
Search results
Results From The WOW.Com Content Network
An adenosine reuptake inhibitor (AdoRI) is a type of drug which acts as a reuptake inhibitor for the purine nucleoside and neurotransmitter adenosine by blocking the action of one or more of the equilibrative nucleoside transporters (ENTs).
Adenosine is a neuromodulator that is responsible for motor function, mood, memory, and learning. Its main purpose is the coordination of responses to different neurotransmitters. [5] Adenosine plays many important roles in biological systems, for example in the central nervous-, cardiovascular-, hepatic-, renal- and respiratory system.
Adverse effects associated with adenosine administration are primarily due to its activation of adenosine receptors on vascular tissue, resulting in vasodilation. Side effects of adenosine include skin flushing, lightheadedness, nausea, sweating, nervousness, numbness, and a sense of impending doom. These effects are typically very short-lived ...
Caffeine keeps you awake by blocking adenosine receptors. Each type of adenosine receptor has different functions, although with some overlap. [3] For instance, both A 1 receptors and A 2A play roles in the heart, regulating myocardial oxygen consumption and coronary blood flow, while the A 2A receptor also has broader anti-inflammatory effects throughout the body. [4]
Abundant extracellular adenosine can then bind to the A2A receptor resulting in a G s-protein coupled response, resulting in the accumulation of intracellular cAMP, which functions primarily through protein kinase A to upregulate inhibitory cytokines such as transforming growth factor-beta (TGF-β) and inhibitory receptors (i.e., PD-1). [56]
This effect on the A 1 receptor also explains why there is a brief moment of cardiac standstill when adenosine is administered as a rapid IV push during cardiac resuscitation. [citation needed] The rapid infusion causes a momentary myocardial stunning effect. In normal physiological states, this serves as protective mechanisms.
Caffeine acts as an antagonist of adenosine A 1 and A 2A receptors. Adenosine is a normal neuromodulator that activates adenosine g-protein coupled receptors. The actions of A 1 and A 2A receptors oppose each other but are both inhibited by caffeine due to its function as an antagonist. [8]
Spinal administration of SB-269970 had no effect on nociception, whereas ondansetron completely reversed the effects of CCK injection. Spinal ondansetron also reversed allodynia and hyperalgesia caused by a peripheral nerve injury. Taken together, these findings indicate a role for 5-HT7 receptors in opioid-induced antinociception, and a role ...