Search results
Results From The WOW.Com Content Network
This definition allows us to state Bézout's theorem and its generalizations precisely. This definition generalizes the multiplicity of a root of a polynomial in the following way. The roots of a polynomial f are points on the affine line, which are the components of the algebraic set defined by the polynomial.
In algebraic geometry, the first definition of an algebraic variety is through zero sets. Specifically, an affine algebraic set is the intersection of the zero sets of several polynomials, in a polynomial ring k [ x 1 , … , x n ] {\displaystyle k\left[x_{1},\ldots ,x_{n}\right]} over a field .
The concept of multiplicity is fundamental for Bézout's theorem, as it allows having an equality instead of a much weaker inequality. Intuitively, the multiplicity of a common zero of several polynomials is the number of zeros into which the common zero can split when the coefficients are slightly changed.
One advantage of this proof over the others is that it shows not only that a polynomial must have a zero but the number of its zeros is equal to its degree (counting, as usual, multiplicity). Another use of Rouché's theorem is to prove the open mapping theorem for analytic functions. We refer to the article for the proof.
Its zeros in the left halfplane are all the negative even integers, and the Riemann hypothesis is the conjecture that all other zeros are along Re(z) = 1/2. In a neighbourhood of a point z 0 , {\displaystyle z_{0},} a nonzero meromorphic function f is the sum of a Laurent series with at most finite principal part (the terms with negative index ...
Let R be a Dedekind domain, K its field of fractions, and let P be a non-zero prime ideal of R. Then, the localization of R at P, denoted R P, is a principal ideal domain whose field of fractions is K. The construction of the previous section applied to the prime ideal PR P of R P yields the P-adic valuation of K.
In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, [1] allows for multiple instances for each of its elements.The number of instances given for each element is called the multiplicity of that element in the multiset.
The other terms also correspond to zeros: the dominant term li(x) comes from the pole at s = 1, considered as a zero of multiplicity −1, and the remaining small terms come from the trivial zeros. For some graphs of the sums of the first few terms of this series see Riesel & Göhl (1970) or Zagier (1977) .