When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    The graph crosses the x-axis at roots of odd multiplicity and does not cross it at roots of even multiplicity. A non-zero polynomial function is everywhere non-negative if and only if all its roots have even multiplicity and there exists an x 0 {\displaystyle x_{0}} such that f ( x 0 ) > 0 {\displaystyle f(x_{0})>0} .

  3. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).

  4. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  5. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    For disconnected graphs, definitions vary: the diameter may be defined as infinite, or as the largest diameter of a connected component, or it may be undefined. diamond The diamond graph is an undirected graph with four vertices and five edges. diconnected Strong ly connected. (Not to be confused with disconnected) digon

  6. Nullity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Nullity_(graph_theory)

    The nullity of a graph in the mathematical subject of graph theory can mean either of two unrelated numbers. If the graph has n vertices and m edges, then: In the matrix theory of graphs, the nullity of the graph is the nullity of the adjacency matrix A of the graph. The nullity of A is given by n − r where r is the rank of the adjacency matrix.

  7. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    In various areas of mathematics, the zero set of a function is the set of all its zeros. More precisely, if f : X → R {\displaystyle f:X\to \mathbb {R} } is a real-valued function (or, more generally, a function taking values in some additive group ), its zero set is f − 1 ( 0 ) {\displaystyle f^{-1}(0)} , the inverse image of { 0 ...

  8. Boundary (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Boundary_(graph_theory)

    In graph theory, the outer boundary of a subset S of the vertices of a graph G is the set of vertices in G that are adjacent to vertices in S, but not in S themselves. The inner boundary is the set of vertices in S that have a neighbor outside S.

  9. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    One advantage of this proof over the others is that it shows not only that a polynomial must have a zero but the number of its zeros is equal to its degree (counting, as usual, multiplicity). Another use of Rouché's theorem is to prove the open mapping theorem for analytic functions. We refer to the article for the proof.