Search results
Results From The WOW.Com Content Network
A condition can be both necessary and sufficient. For example, at present, "today is the Fourth of July" is a necessary and sufficient condition for "today is Independence Day in the United States". Similarly, a necessary and sufficient condition for invertibility of a matrix M is that M has a nonzero determinant.
Wherever logic is applied, especially in mathematical discussions, it has the same meaning as above: it is an abbreviation for if and only if, indicating that one statement is both necessary and sufficient for the other. This is an example of mathematical jargon (although, as noted above, if is more often used than iff in statements of definition).
Thus, tr AA* = tr BB* is a necessary condition for unitary equivalence, but it is not sufficient. Specht's theorem gives infinitely many necessary conditions which together are also sufficient. The formulation of the theorem uses the following definition. A word in two variables, say x and y, is an expression of the form
Necessary condition analysis follows a step-by-step approach to identify necessary conditions. The key steps involved in conducting NCA are as follows: Formulation of a necessity hypothesis: The first step in NCA is to clearly define the theoretical expectation specifying the condition(s) that may be necessary for the outcome of interest.
The necessary conditions are sufficient for optimality if the objective function of a maximization problem is a differentiable concave function, the inequality constraints are differentiable convex functions, the equality constraints are affine functions, and Slater's condition holds. [11]
The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of
The global optimum can be found by comparing the values of the original objective function at the points satisfying the necessary and locally sufficient conditions. The method of Lagrange multipliers relies on the intuition that at a maximum, f(x, y) cannot be increasing in the direction of any such neighboring point that also has g = 0.
Necessary and sufficient condition, in logic, something that is a required condition for something else to be the case; Necessary proposition, in logic, a statement about facts that is either unassailably true (tautology) or obviously false (contradiction) Metaphysical necessity, in philosophy, a truth which is true in all possible worlds