Search results
Results From The WOW.Com Content Network
In fluids with relatively low viscosity there is an almost linear, inverse relationship between temperature and surface tension. [13] The decrease in surface tension increases the wettability of the capillary walls, making it easier for the fluid to flow through the capillary. Heat also effects the viscosity of a fluid inside a capillary.
In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the shear rate is different. The fluid can even exhibit time-dependent viscosity. Therefore ...
Most vessels of the microcirculation are lined by flattened cells of the endothelium and many of them are surrounded by contractile cells called pericytes.The endothelium provides a smooth surface for the flow of blood and regulates the movement of water and dissolved materials in the interstitial plasma between the blood and the tissues.
Blood resistance varies depending on blood viscosity and its plugged flow (or sheath flow since they are complementary across the vessel section) size as well, and on the size of the vessels. Assuming steady, laminar flow in the vessel, the blood vessels behavior is similar to that of a pipe.
A capillary is a small blood vessel, from 5 to 10 micrometres in diameter, and is part of the microcirculation system. Capillaries are microvessels and the smallest blood vessels in the body. They are composed of only the tunica intima (the innermost layer of an artery or vein), consisting of a thin wall of simple squamous endothelial cells. [2]
Blood viscosity is a measure of the resistance of blood to flow. It can also be described as the thickness and stickiness of blood. This biophysical property makes it a critical determinant of friction against the vessel walls, the rate of venous return, the work required for the heart to pump blood, and how much oxygen is transported to tissues and organs.
Differences in vascular permeability between normal tissue and a tumor. Vascular permeability, often in the form of capillary permeability or microvascular permeability, characterizes the capacity of a blood vessel wall to allow for the flow of small molecules (drugs, nutrients, water, ions) or even whole cells (lymphocytes on their way to the site of inflammation) in and out of the vessel.
The Fåhræus–Lindqvist effect (/ f ɑː ˈ r eɪ. ə s ˈ l ɪ n d k v ɪ s t /) or sigma effect [1] describes how the viscosity of blood changes with the diameter of the vessel it travels through. In particular there is a decrease in viscosity as the vessel diameter decreases, but only at small diameters of 10–300 micrometers (mainly ...