Search results
Results From The WOW.Com Content Network
Contracting an edge of a polygon-circle graph results in another polygon-circle graph. A geometric representation of the new graph may be formed by replacing the polygons corresponding to the two endpoints of the contracted edge by their convex hull. Alternatively, in the alternating sequence representing the original graph, combining the ...
In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain. These segments are called its edges or sides, and the points where two of the edges meet are the polygon's vertices (singular: vertex) or corners.
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.
A proper vertex coloring of the Petersen graph with 3 colors, the minimum number possible. In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color.
The following list of polygons, polyhedra and polytopes gives the names of various classes of polytopes and lists some specific examples. Polytope elements [ edit ]
In geometry, a generalized polygon can be called a polygram, and named specifically by its number of sides. All polygons are polygrams, but they can also include disconnected sets of edges, called a compound polygon. For example, a regular pentagram, {5/2}, has 5 sides, and the regular hexagram, {6/2} or 2{3}, has 6 sides divided into two triangles
The user selects the color corresponding to one of the numbers then uses it to fill in a delineated section of the canvas, in a manner similar to a coloring book. The kits were invented, developed and marketed in 1950 by Max S. Klein, an engineer and owner of the Palmer Paint Company in Detroit, Michigan, United States, and Dan Robbins, a ...
In mathematics, a polygonal number is a number that counts dots arranged in the shape of a regular polygon [1]: 2-3 . These are one type of 2-dimensional figurate numbers . Polygonal numbers were first studied during the 6th century BC by the Ancient Greeks, who investigated and discussed properties of oblong , triangular , and square numbers ...