Search results
Results From The WOW.Com Content Network
As the signal reflects off various parts of the target, they may interfere as they return to the radar receiver. At any single distance from the station, this will cause the signal to be amplified or diminished compared to the baseline signal one calculates from the radar equation. As the target moves, these patterns change.
An object at height h above the ground and slant range R forms an angle α that can be calculated through sin α = h / R.By re-arrangement, R = h / sin α, or R = h csc α. The radar equation states that the signal received from an object, P e, varies inversely with the 4th power of range and directly as the square of the antenna gain, G, such that P e ~ G 2 / R 4.
When substituted into the link budget equation above, the result is the logarithmic form of the Friis transmission equation. In some cases, it is convenient to consider the loss due to distance and wavelength separately, but in that case, it is important to keep track of which units are being used, as each choice involves a differing constant ...
As a result, one gets proof of the Snell's law along with this invariance. This invariant is valid in a more general situation; the spherical radius is then replaced by the radius of curvature at points along the ray. It is also used in equation (4) of the 2005 NASA's report [3] in an application of satellite tracking.
Phase-comparison monopulse is a technique used in radio frequency (RF) applications such as radar and direction finding to accurately estimate the direction of arrival of a signal from the phase difference of the signal measured on two (or more) separated antennas [1] or more typically from displaced phase centers of an array antenna.
Merrill Skolnik (November 6, 1927 – January 27, 2022) was an American researcher in the area of radar systems and the author or editor of a number of standard texts in the field. He is best known for his introductory text "Introduction to Radar Systems" and for editing the "Radar Handbook".
The scale of dBZ values can be seen along the bottom of the image. dBZ is a logarithmic dimensionless technical unit used in radar. It is mostly used in weather radar, to compare the equivalent reflectivity factor (Z) of a remote object (in mm 6 per m 3) to the return of a droplet of rain with a diameter of 1 mm (1 mm 6 per m 3). [1]
The amount of bending can be related to the refractive index by using an Abel transform on the formula relating bending angle to refractivity. In the case of the neutral atmosphere (below the ionosphere), information on the atmosphere's temperature , pressure and water vapor content can be derived, thus giving radio occultation data ...