When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Netflix Prize - Wikipedia

    en.wikipedia.org/wiki/Netflix_Prize

    The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user ratings for films, based on previous ratings without any other information about the users or films, i.e. without the users being identified except by numbers assigned for the contest.

  3. Gravity R&D - Wikipedia

    en.wikipedia.org/wiki/Gravity_R&D

    The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user ratings for films, based on previous ratings. The prize would be awarded to the team achieving over 10% improvement over Netflix's own Cinematch algorithm. The team "Gravity" was the front runner during January—May 2007. [2]

  4. Recommender system - Wikipedia

    en.wikipedia.org/wiki/Recommender_system

    A recommender system (RecSys), or a recommendation system (sometimes replacing system with terms such as platform, engine, or algorithm), is a subclass of information filtering system that provides suggestions for items that are most pertinent to a particular user.

  5. Meet the Netflix executive responsible for your recommendations

    www.aol.com/news/meet-netflix-executive...

    Netflix Chief Product Officer Eunice Kim discusses how the streamer recommends content and how the platform will evolve as other types of contents like games are added. Meet the Netflix executive ...

  6. Matrix factorization (recommender systems) - Wikipedia

    en.wikipedia.org/wiki/Matrix_factorization...

    While Funk MF is able to provide very good recommendation quality, its ability to use only explicit numerical ratings as user-items interactions constitutes a limitation. Modern day recommender systems should exploit all available interactions both explicit (e.g. numerical ratings) and implicit (e.g. likes, purchases, skipped, bookmarked). To ...

  7. Collaborative filtering - Wikipedia

    en.wikipedia.org/wiki/Collaborative_filtering

    In a recommendation system where everyone can give the ratings, people may give many positive ratings for their own items and negative ratings for their competitors'. It is often necessary for the collaborative filtering systems to introduce precautions to discourage such manipulations.

  8. Cold start (recommender systems) - Wikipedia

    en.wikipedia.org/wiki/Cold_start_(recommender...

    The cold start problem is a well known and well researched problem for recommender systems.Recommender systems form a specific type of information filtering (IF) technique that attempts to present information items (e-commerce, films, music, books, news, images, web pages) that are likely of interest to the user.

  9. Jinni (search engine) - Wikipedia

    en.wikipedia.org/wiki/Jinni_(search_engine)

    The Jinni service included semantic search, [1] a meaning-based approach to interpreting queries by identifying concepts within the content, rather than keywords. The search engine served as a video discovery tool focusing on user tastes, including mood, plot, and other parameters, with options to browse and refine using additional terms, e.g., “action in a future dystopia” or “Beautiful ...