Search results
Results From The WOW.Com Content Network
The original reaction was a mixture of the reagents phenol, chloroform, and acetone in the presence of a sodium hydroxide solution. [2] Prior to Bargellini's research, the product attributed to this multi-component reaction (MCR) had been described as a phenol derivative in chemistry texts at the time.
The mechanism of the Reimer-Tiemann reaction. Chloroform (1) is deprotonated by a strong base (normally hydroxide) to form the chloroform carbanion (2) which will quickly alpha-eliminate to give dichlorocarbene (3); this is the principal reactive species. The hydroxide will also deprotonate the phenol (4) to give a negatively charged phenoxide ...
This mixture is then centrifuged. Because the phenol:chloroform mixture is immiscible with water, the centrifuge will cause two distinct phases to form: an upper aqueous phase, and a lower organic phase. The aqueous phase rises to the top because it is less dense than the organic phase containing the phenol:chloroform.
Phenol is often used in combination with chloroform. [4] Adding an equal volume of chloroform and phenol ensures a distinct separation between the aqueous and organic phases. Chloroform and phenol are miscible and create a denser solution than phenol alone, aiding the separation of the organic and aqueous layers. This addition of chloroform is ...
A chlorophenol is any organochloride of phenol that contains one or more covalently bonded chlorine atoms. There are five basic types of chlorophenols (mono- to pentachlorophenol) and 19 different chlorophenols in total when positional isomerism is taken into account. Chlorophenols are produced by electrophilic halogenation of phenol with ...
The reaction mechanism for chlorination of benzene is the same as bromination of benzene. Iron(III) bromide and iron(III) chloride become inactivated if they react with water, including moisture in the air. Therefore, they are generated by adding iron filings to bromine or chlorine. Here is the mechanism of this reaction:
The reaction is attractive for their atom economy because it avoid pre-functionalized starting materials often required in traditional redox-neutral cross-couplings. Oxidative phenol couplings, however, often suffer from over-oxidation, especially since the intended coupled product is more oxidizable (has a lower oxidation potential ) than the ...
This chemical reaction is typical of alkanes and alkyl-substituted aromatics under application of UV light. The reaction is used for the industrial synthesis of chloroform (CHCl 3), dichloromethane (CH 2 Cl 2), and hexachlorobutadiene. It proceeds by a free-radical chain mechanism.