Search results
Results From The WOW.Com Content Network
This definition is equivalent to the definition of convex curves from support lines. Every convex curve, defined as a curve with a support line through each point, is a subset of the boundary of its own convex hull. Every connected subset of the boundary of a convex set has a support line through each of its points. [8] [9] [19]
The term convex is often referred to as convex down or concave upward, and the term concave is often referred as concave down or convex upward. [ 3 ] [ 4 ] [ 5 ] If the term "convex" is used without an "up" or "down" keyword, then it refers strictly to a cup shaped graph ∪ {\displaystyle \cup } .
Convex polygon, a polygon which encloses a convex set of points; Convex polytope, a polytope with a convex set of points; Convex metric space, a generalization of the convexity notion in abstract metric spaces; Convex function, when the line segment between any two points on the graph of the function lies above or on the graph
In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.
The question of whether it is possible to construct a three-dimensional body which is mono-monostatic but also homogeneous and convex was raised by Russian mathematician Vladimir Arnold in 1995. Being convex is essential as it is trivial to construct a mono-monostatic non-convex body: an example would be a ball with a cavity inside it.
():= + The figure illustrates the convex combination ():= + of and as graph in red color. In convex geometry and vector algebra , a convex combination is a linear combination of points (which can be vectors , scalars , or more generally points in an affine space ) where all coefficients are non-negative and sum to 1. [ 1 ]
Thus, the collection of −∞-convex measures is the largest such class, whereas the 0-convex measures (the logarithmically concave measures) are the smallest class. The convexity of a measure μ on n-dimensional Euclidean space R n in the sense above is closely related to the convexity of its probability density function. [2]
A dodecahedron is a convex body.. In mathematics, a convex body in -dimensional Euclidean space is a compact convex set with non-empty interior.Some authors do not require a non-empty interior, merely that the set is non-empty.