Ad
related to: section modulus steel angle calculator free download for desktop screen
Search results
Results From The WOW.Com Content Network
The plastic section modulus is calculated as the sum of the areas of the cross section on either side of the PNA, each multiplied by the distance from their respective local centroids to the PNA. [16] = + where: A C is the area in compression A T is the area in tension y C, y T are the distances from the PNA to their centroids. Plastic section ...
Download QR code; In other projects Appearance. move to sidebar hide ... English: The cross-section of an I-beam with dimensions for calculating the section modulus ...
The curve () describes the deflection of the beam in the direction at some position (recall that the beam is modeled as a one-dimensional object). is a distributed load, in other words a force per unit length (analogous to pressure being a force per area); it may be a function of , , or other variables.
In this case, the equation governing the beam's deflection can be approximated as: = () where the second derivative of its deflected shape with respect to (being the horizontal position along the length of the beam) is interpreted as its curvature, is the Young's modulus, is the area moment of inertia of the cross-section, and is the internal ...
is the cross section area. is the elastic modulus. is the shear modulus. is the second moment of area., called the Timoshenko shear coefficient, depends on the geometry. Normally, = / for a rectangular section.
E is a material constant called Young's modulus or elastic modulus; ε is the resulting strain. This relationship only applies in the elastic range and indicates that the slope of the stress vs. strain curve can be used to find Young's modulus (E). Engineers often use this calculation in tensile tests.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress.They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength.
It is a function of the Young's modulus, the second moment of area of the beam cross-section about the axis of interest, length of the beam and beam boundary condition. Bending stiffness of a beam can analytically be derived from the equation of beam deflection when it is applied by a force.