Search results
Results From The WOW.Com Content Network
The fight-or-flight or the fight-flight-freeze-or-fawn [1] (also called hyperarousal or the acute stress response) is a physiological reaction that occurs in response to a perceived harmful event, attack, or threat to survival. [2] It was first described by Walter Bradford Cannon in 1915.
The sympathetic response is colloquially known as the "fight-or-flight response," indicated by accelerated pulse and respiration rates, pupil dilation, and a general feeling of anxiety and hyper-awareness. This is caused by the release of epinephrine and norepinephrine from the adrenal glands.
The activity of the sympathetic nervous system drives what is called the "fight or flight" response. [4] The fight or flight response to emergency or stress involves increased heart rate and force contraction, vasoconstriction, bronchodilation, sweating, and secretion of the epinephrine and cortisol from the adrenal medulla, among numerous ...
Fear is an unpleasant emotion that arises in response to perceived dangers or threats. Fear causes physiological and psychological changes. It may produce behavioral reactions such as mounting an aggressive response or fleeing the threat, commonly known as the fight-or-flight response. Extreme cases of fear can trigger an immobilized freeze ...
In evolutionary psychology, people often speak of the four Fs which are said to be the four basic and most primal drives (motivations or instincts) that animals (including humans) are evolutionarily adapted to have, follow, and achieve: fighting, fleeing, feeding and fucking (a more polite synonym is the word "mating"). [1]
If the amygdala perceives a match to the stimulus, i.e., if the record of experiences in the hippocampus tells the amygdala that it is a fight, flight or freeze situation, then the amygdala triggers the HPA (hypothalamic–pituitary–adrenal) axis and "hijacks" or overtakes rational brain function. [5]
It plays an essential role in the fight-or-flight response by increasing blood flow to muscles, heart output by acting on the SA node, [15] pupil dilation response, and blood sugar level. [16] [17] It does this by binding to alpha and beta receptors. [17] It is found in many animals, including humans, and some single-celled organisms.
During this “Fight or flight” /acute stress response, both areas of the conscious brain can struggle to process this information at the same time. Consequently, perceptual distortions can occur (e.g. slow motion/ tunnel vision, disruption of hearing) As a part of this, the processing of auditory information can be stopped completely ...