When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rutherford model - Wikipedia

    en.wikipedia.org/wiki/Rutherford_model

    Scientists eventually discovered that atoms have a positively charged nucleus (with an atomic number of charges) in the center, with a radius of about 1.2 × 10 −15 meters × [atomic mass number] 1 ⁄ 3. Electrons were found to be even smaller.

  3. Timeline of particle discoveries - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_particle...

    This is a timeline of subatomic particle discoveries, including all particles thus far discovered which appear to be elementary (that is, indivisible) given the best available evidence. It also includes the discovery of composite particles and antiparticles that were of particular historical importance.

  4. Rutherford scattering experiments - Wikipedia

    en.wikipedia.org/wiki/Rutherford_scattering...

    The prevailing model of atomic structure before Rutherford's experiments was devised by J. J. Thomson. [2]: 123 Thomson had discovered the electron through his work on cathode rays [3] and proposed that they existed within atoms, and an electric current is electrons hopping from one atom to an adjacent one in a series.

  5. Timeline of atomic and subatomic physics - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_atomic_and...

    1918 Ernest Rutherford notices that, when alpha particles were shot into nitrogen gas, his scintillation detectors showed the signatures of hydrogen nuclei. 1921 Alfred Landé introduces the Landé g-factor; 1922 Arthur Compton studies X-ray photon scattering by electrons demonstrating the 'particle' aspect of electromagnetic radiation.

  6. Discovery of chemical elements - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_chemical_elements

    Perey discovered it as a decay product of 227 Ac. [178] Francium was the last element to be discovered in nature, rather than synthesized in the lab, although four of the "synthetic" elements that were discovered later (plutonium, neptunium, astatine, and promethium) were eventually found in trace amounts in nature as well. [179]

  7. Timeline of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_quantum_mechanics

    1902 – To explain the octet rule (1893), Gilbert N. Lewis develops the "cubical atom" theory in which electrons in the form of dots are positioned at the corner of a cube. Predicts that single, double, or triple "bonds" result when two atoms are held together by multiple pairs of electrons (one pair for each bond) located between the two atoms.

  8. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    The presence of such bands allows electrons in metals to behave as if they were free or delocalized electrons. These electrons are not associated with specific atoms, so when an electric field is applied, they are free to move like a gas (called Fermi gas) [137] through the material much like free electrons.

  9. History of subatomic physics - Wikipedia

    en.wikipedia.org/wiki/History_of_subatomic_physics

    Fermions are particles "like electrons and nucleons" and generally comprise the matter. Note that any subatomic or atomic particle composed of even total number of fermions (such as protons, neutrons, and electrons) is a boson, so a boson is not necessarily a force transmitter and perfectly can be an ordinary material particle.