When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if

  3. Secant method - Wikipedia

    en.wikipedia.org/wiki/Secant_method

    In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .

  4. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    For well-behaved functions, the order of convergence of Muller's method is approximately 1.839 and exactly the tribonacci constant. This can be compared with approximately 1.618, exactly the golden ratio, for the secant method and with exactly 2 for Newton's method. So, the secant method makes less progress per iteration than Muller's method ...

  5. Steffensen's method - Wikipedia

    en.wikipedia.org/wiki/Steffensen's_method

    The simplest form of the formula for Steffensen's method occurs when it is used to find a zero of a real function; that is, to find the real value that satisfies () =.Near the solution , the derivative of the function, ′, is supposed to approximately satisfy < ′ <; this condition ensures that is an adequate correction-function for , for finding its own solution, although it is not required ...

  6. Aitken's delta-squared process - Wikipedia

    en.wikipedia.org/wiki/Aitken's_delta-squared_process

    In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.

  7. Talk:Secant method - Wikipedia

    en.wikipedia.org/wiki/Talk:Secant_method

    It converges at faster than a linear rate, so that it is more rapidly convergent than the bisection method. It does not require use of the derivative of the function, something that is not available in a number of applications. It requires only one function evaluation per iteration, as compared with Newton’s method which requires two.

  8. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    In this example, the Gauss–Newton algorithm will be used to fit a model to some data by minimizing the sum of squares of errors between the data and model's predictions. In a biology experiment studying the relation between substrate concentration [S] and reaction rate in an enzyme-mediated reaction, the data in the following table were obtained.

  9. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).