When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is always a positive number, as the nucleus must gain energy for the nucleons to move apart from each other.

  3. Neutron temperature - Wikipedia

    en.wikipedia.org/wiki/Neutron_temperature

    They are named fast neutrons to distinguish them from lower-energy thermal neutrons, and high-energy neutrons produced in cosmic showers or accelerators. Fast neutrons are produced by nuclear processes: Nuclear fission: thermal fission of 235 U produces neutrons with a mean energy of 2 MeV (200 TJ/kg, i.e. 20,000 km/s), [17] which qualifies as ...

  4. Neutron cross section - Wikipedia

    en.wikipedia.org/wiki/Neutron_cross_section

    The energy is defined at the most likely energy and velocity of the neutron. The neutron population consists of a Maxwellian distribution, and hence the mean energy and velocity will be higher. Consequently, also a Maxwellian correction-term 1 ⁄ 2 √π has to be included when calculating the cross-section Equation 38.

  5. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    A smaller fraction (about four per million) of free neutrons decay in so-called "two-body (neutron) decays", in which a proton, electron and antineutrino are produced as usual, but the electron fails to gain the 13.6 eV necessary energy to escape the proton (the ionization energy of hydrogen), and therefore simply remains bound to it, forming a ...

  6. Neutron radiation - Wikipedia

    en.wikipedia.org/wiki/Neutron_radiation

    The neutrons in nuclear reactors are generally categorized as slow (thermal) neutrons or fast neutrons depending on their energy. Thermal neutrons are similar in energy distribution (the Maxwell–Boltzmann distribution) to a gas in thermodynamic equilibrium; but are easily captured by atomic nuclei and are the primary means by which elements ...

  7. Nuclear shell model - Wikipedia

    en.wikipedia.org/wiki/Nuclear_shell_model

    When adding nucleons (protons and neutrons) to a nucleus, there are certain points where the binding energy of the next nucleon is significantly less than the last one. This observation that there are specific magic quantum numbers of nucleons ( 2, 8, 20, 28, 50, 82, and 126 ) that are more tightly bound than the following higher number is the ...

  8. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    Either a low-energy projectile is absorbed or a higher energy particle transfers energy to the nucleus, leaving it with too much energy to be fully bound together. On a time scale of about 10 −19 seconds, particles, usually neutrons, are "boiled" off.

  9. Neutron activation - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation

    If the fission requires an input of energy, that comes from the kinetic energy of the neutron. An example of this kind of fission in a light element can occur when the stable isotope of lithium, lithium-7, is bombarded with fast neutrons and undergoes the following nuclear reaction: 7 3 Li + 1 0 n → 4 2 He + 3 1 H + 1 0 n + gamma rays ...