When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_equations

    The incompressible NavierStokes equation is a differential algebraic equation, having the inconvenient feature that there is no explicit mechanism for advancing the pressure in time. Consequently, much effort has been expended to eliminate the pressure from all or part of the computational process.

  3. Pressure-correction method - Wikipedia

    en.wikipedia.org/wiki/Pressure-correction_method

    Pressure-correction method is a class of methods used in computational fluid dynamics for numerically solving the Navier-Stokes equations normally for incompressible flows. Common properties [ edit ]

  4. Non-dimensionalization and scaling of the Navier–Stokes ...

    en.wikipedia.org/wiki/Non-dimensionalization_and...

    In fluid mechanics, non-dimensionalization of the NavierStokes equations is the conversion of the NavierStokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...

  5. Landau–Squire jet - Wikipedia

    en.wikipedia.org/wiki/Landau–Squire_jet

    This is an exact solution to the incompressible form of the Navier-Stokes equations, which was first discovered by Lev Landau in 1944 [1] [2] and later by Herbert Squire in 1951. [3] The self-similar equation was in fact first derived by N. A. Slezkin in 1934, [ 4 ] but never applied to the jet.

  6. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    In the analysis of a flow, it is often desirable to reduce the number of equations and/or the number of variables. The incompressible NavierStokes equation with mass continuity (four equations in four unknowns) can be reduced to a single equation with a single dependent variable in 2D, or one vector equation in 3D.

  7. Discretization of Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Discretization_of_Navier...

    Discretization of the NavierStokes equations of fluid dynamics is a reformulation of the equations in such a way that they can be applied to computational fluid dynamics. Several methods of discretization can be applied: Finite volume method; Finite elements method; Finite difference method

  8. Rayleigh problem - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_problem

    In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.

  9. Direct numerical simulation - Wikipedia

    en.wikipedia.org/wiki/Direct_numerical_simulation

    Also, direct numerical simulations are useful in the development of turbulence models for practical applications, such as sub-grid scale models for large eddy simulation (LES) and models for methods that solve the Reynolds-averaged NavierStokes equations (RANS). This is done by means of "a priori" tests, in which the input data for the model ...

  1. Related searches navier stokes incompressible state practice worksheet kuta software lab

    navier stokes equation pdfnavier stokes fluid mechanics
    navier stokes physicsnon dimensionalization of navier stockes