Search results
Results From The WOW.Com Content Network
Usually, convergence in distribution does not imply convergence almost surely. However, for a given sequence { X n } which converges in distribution to X 0 it is always possible to find a new probability space (Ω, F , P) and random variables { Y n , n = 0, 1, ...} defined on it such that Y n is equal in distribution to X n for each n ≥ 0 ...
In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (with respect to the probability measure). [1] In other words, the set of outcomes on which the event does not occur has probability 0, even though the set might not be empty.
Convergence in probability does not imply almost sure convergence in the discrete case [ edit ] If X n are independent random variables assuming value one with probability 1/ n and zero otherwise, then X n converges to zero in probability but not almost surely.
It is equivalent to check condition (iii) for the series = = = (′) where for each , and ′ are IID—that is, to employ the assumption that [] =, since is a sequence of random variables bounded by 2, converging almost surely, and with () = ().
The order in probability notation is used in probability theory and statistical theory in direct parallel to the big O notation that is standard in mathematics.Where the big O notation deals with the convergence of sequences or sets of ordinary numbers, the order in probability notation deals with convergence of sets of random variables, where convergence is in the sense of convergence in ...
In probability theory, Kolmogorov's two-series theorem is a result about the convergence of random series. It follows from Kolmogorov's inequality and is used in one proof of the strong law of large numbers.
If is a stationary ergodic process, then () converges almost surely to = [] . The Glivenko–Cantelli theorem gives a stronger mode of convergence than this in the iid case. An even stronger uniform convergence result for the empirical distribution function is available in the form of an extended type of law of the iterated logarithm .
In probability theory, Kolmogorov's zero–one law, named in honor of Andrey Nikolaevich Kolmogorov, specifies that a certain type of event, namely a tail event of independent σ-algebras, will either almost surely happen or almost surely not happen; that is, the probability of such an event occurring is zero or one.