Search results
Results From The WOW.Com Content Network
Interface conditions describe the behaviour of electromagnetic fields; electric field, electric displacement field, and the magnetic field at the interface of two materials. The differential forms of these equations require that there is always an open neighbourhood around the point to which they are applied, otherwise the vector fields and H ...
Python Other: Predefined equations: Yes, many predefined physics and multiphysics interfaces in COMSOL Multiphysics and its add-ons. A large number of Bilinear and Linear forms Model bricks: Laplace, linear and nonlinear elasticity, Helmholtz, plasticity, Mindlin and K.L. plates, boundary conditions including contact with friction.
Meep supports dispersive, nonlinear and anisotropic media, and features subpixel smoothing and parallelization, as well as an embedded frequency-domain solver for steady-state fields and eigenmode expansion. [2] The package was subsequently expanded to include an adjoint solver for topology optimization and inverse design, [3] and a Python ...
EMPy ("Electromagnetic Python") software. motofit is a program for analysing neutron and X-ray reflectometry data. OpenFilters is a program for designing optical filters. Py_matrix is an open source Python code that implements the transfer-matrix method for multilayers with arbitrary dielectric tensors. It was especially created for plasmonic ...
That derivation combined conservation of energy with continuity of the tangential vibration at the interface, but failed to allow for any condition on the normal component of vibration. [25] The first derivation from electromagnetic principles was given by Hendrik Lorentz in 1875.
Berenger's original formulation is called a split-field PML, because it splits the electromagnetic fields into two unphysical fields in the PML region. A later formulation that has become more popular because of its simplicity and efficiency is called uniaxial PML or UPML , [ 5 ] in which the PML is described as an artificial anisotropic ...
Simulation of negative refraction from a metasurface at 15 GHz for different angles of incidence. The simulations are performed through the method of moments. The method of moments (MoM), also known as the moment method and method of weighted residuals, [1] is a numerical method in computational electromagnetics.
There is no way to determine unique values for permittivity and permeability at a material interface. Space and time steps must satisfy the CFL condition, or the leapfrog integration used to solve the partial differential equation is likely to become unstable. FDTD finds the E/H fields directly everywhere in the computational domain.