Ad
related to: k factor formula calculator
Search results
Results From The WOW.Com Content Network
In fire protection engineering, the K-factor formula is used to calculate the volumetric flow rate from a nozzle. Spray nozzles can for example be fire sprinklers or water mist nozzles, hose reel nozzles, water monitors and deluge fire system nozzles.
The K-factor is the bending capacity of sheet metal, and by extension the forumulae used to calculate this. [1] [2] [3] Mathematically it is an engineering aspect of geometry. [4] Such is its intricacy in precision sheet metal bending [5] (with press brakes in particular) that its proper application in engineering has been termed an art. [4] [5]
K factor (crude oil refining), a system for classifying crude oil; K-factor (fire protection), formula used to calculate the discharge rate from a fire system nozzle; K-factor (metalurgy), formulae used to calculate the bending capacity of sheet metal; K factor (traffic engineering), the proportion of annual average daily traffic occurring in ...
The K Factor also helps calculate the peak-to-daily ratio of traffic. K30 helps maintain a healthy volume to capacity ratio. [3] K50 and K100 will sometimes be seen. K50 and K100 will not use the 30th highest hourly traffic volumes but the 50th or 100th highest hourly traffic volume when calculating the K factor.
K v is the flow factor (expressed in m 3 /h), Q is the flowrate (expressed in m 3 /h), SG is the specific gravity of the fluid (for water = 1), ∆P is the differential pressure across the device (expressed in bar). K v can be calculated from C v using the equation [4] =.
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
The relationships are based on levels of risk considered acceptable for specific exposures but they do not provide absolute safety or protection. Exposures are expressed by a “K-factor” (K6, K18, etc.) which represents the degree of protection provided; higher is better.
The K factor or characterization factor is defined from Rankine boiling temperature °R=1.8Tb[k] and relative to water density ρ at 60°F: . K(UOP) = / The K factor is a systematic way of classifying a crude oil according to its paraffinic, naphthenic, intermediate or aromatic nature. 12.5 or higher indicate a crude oil of predominantly paraffinic constituents, while 10 or lower indicate a ...