When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Anomalies/outliers are typically – be it explicitly or implicitly – defined with respect to clustering structure in data. Natural language processing Clustering can be used to resolve lexical ambiguity. [58] DevOps Clustering has been used to analyse the effectiveness of DevOps teams. [60]

  3. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  4. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  5. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Model-based clustering was first invented in 1950 by Paul Lazarsfeld for clustering multivariate discrete data, in the form of the latent class model. [41] In 1959, Lazarsfeld gave a lecture on latent structure analysis at the University of California-Berkeley, where John H. Wolfe was an M.A. student. This led Wolfe to think about how to do the ...

  6. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  7. OPTICS algorithm - Wikipedia

    en.wikipedia.org/wiki/OPTICS_algorithm

    Ordering points to identify the clustering structure (OPTICS) is an algorithm for finding density-based [1] clusters in spatial data. It was presented by Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel and Jörg Sander. [ 2 ]

  8. Nearest-neighbor chain algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_chain...

    Hierarchical clustering is a version of cluster analysis in which the clusters form a hierarchy or tree-like structure rather than a strict partition of the data items. In some cases, this type of clustering may be performed as a way of performing cluster analysis at multiple different scales simultaneously.

  9. Conceptual clustering - Wikipedia

    en.wikipedia.org/wiki/Conceptual_clustering

    The COBWEB data structure is a hierarchy (tree) wherein each node represents a given concept. Each concept represents a set (actually, a multiset or bag) of objects, each object being represented as a binary-valued property list. The data associated with each tree node (i.e., concept) are the integer property counts for the objects in that concept.